3 research outputs found

    Real‐world comprehensive diagnosis and “Surgery + X” treatment strategy of early‐stage synchronous multiple primary lung cancer

    No full text
    Abstract Background Diagnosing and treating synchronous multiple primary lung cancers (sMPLC) are complex and challenging. This study aimed to report real‐world data on the comprehensive diagnosis and treatment of patients with early‐stage sMPLC. Materials and Methods A single‐center cohort study was carried out and a large number of patients with early‐stage sMPLC were included. A single‐ or two‐stage surgery was performed to remove the primary and co‐existing lesions. The “X” strategies, including ablation, SBRT, and EGFR‐TKIs treatment, were applied to treat the high‐risk residual lesions. Wide panel‐genomic sequencing was performed to assess the genetic heterogeneity of the co‐existing lesions. Results A total of 465 early‐stage sMPLC patients with 1198 resected lesions were included. Despite most patients being histologically different or harboring different genetic alternations, about 7.5% of the patients had the same histological type and driver gene mutation changes, comprehensive re‐evaluation is thus needed. The “Surgery + X” strategy showed remarkable efficacy and safety in treating multiple lesions. Follow‐up data revealed that the T2 stage (p = 0.014) and the solid presence of a primary lesion (p < 0.001) were significantly related to tumor recurrence. And a T2‐stage primary tumor had a significantly higher rate of developing new lesions after the initial surgery (p < 0.001). Conclusions In real‐world practice, histopathological and radiological evaluation combined with genetic analyses could be a robust diagnostic approach for sMPLC. The “Surgery + X” treatment strategy showed remarkable efficacy, superiority, and safety in the clinical treatment of early‐stage sMPLC

    Improving anti‐Gram‐positive‐bacterial performance and osteogenesis for zinc alloy via mussel mimetic polydopamine with non‐antibiotic lysozyme and parathyroid hormone

    No full text
    Abstract In this work, a novel coating with a non‐antibiotic agent for inhibiting Gram‐positive bacteria and promoting osteogenesis was prepared on zinc‐aluminium alloy (ZA6‐1) via mussel mimetic polydopamine (PDA) containing lysozyme (LYS) and parathyroid hormone (PTH). The results indicate that as‐deposited coatings can efficiently decrease the degradation rate of ZA6‐1 from 0.52 to 0.16 mm/year, and the addition of LYS weakens the coating resistance, while the addition of PTH enhances the coating resistance. In spite that no obvious inhibition of Escherichia coli is observed, the coated zinc alloys show good in vitro antibacterial performance against Staphylococcus aureus. Compared with ZA6‐1 zinc alloys, the increase of antibacterial efficacy reaches 86.9%–90.1%. Furthermore, the lower hydrophilicity (26.4°), higher osteoblast cell viability (>100%), good osteoblast cell morphology and better osteoblast cell differentiation (ALP = 107.7%) for PDA‐LYS/PTH coated samples support that as‐prepared coating is promising for modifying biodegradable zinc implants
    corecore